
Leverage patterns to improve speed and ease of deploy

Implement feature toggles or dark launches to control visibility of changes

Employ environment based or application based release patterns to
decouple deployment from customer release.

Decouple deployments from releases

Embed Ops engineers into our service teams

Ensure the operational skills are within the service teams, either by
embedding DevOps, or training and empowering the development team

Integrate code deployment into the deployment pipeline

Ensure packages are suitable for PRD deployment, see env readiness at a
glance, automated deploy, and record and test automatically.

Enable automated self-service deployments

Create a code promotion process that can be performed by Dev or Ops
without manual intervention to build, test, and deploy the software

Automate the deployment process (code, test, and infra.)

Automate all steps across the deployment processes, minimizing the
manual effort required through the process to create repeatability

Enable and practice continuous integration

Adopt trunk-based development practices

Institutionalize that developers need to check-in their code to trunk at
least once per day to limit the batch size of changes.

Use small batch development

Merge early and often – by providing many small merges, as opposed to
building up large and infrequent merges.

Establish Andon cord for when deployment pipelines break

When test failure occurs – ensure there is shared responsibility for all to
react and address the failure before continuing further work.

Integration of non-functional requirements testing

Tests should include validation of system attributes we care about –
supported applications, compilers, OS, and any other dependencies.

Integrate performance testing into our test suite

Write automated performance tests that validate across the entire
application stack as part of the deployment pipeline.

Automate as many of our manual tests as possible

Start with a set of automated and fully reliable tests, adding iteratively only
tests that genuinely validate the business goals we’re trying to achieve.

Enable Fast and Reliable Automated Testing

Catch errors as early in our automated testing as possible

Establish an “ideal test pyramid” where we aim to detect issues as early
and as fast as possible (ie. Unit tests)

Build a fast and reliable automated validation test suite

Automate all layers of the testing – balancing the test pyramid across unit,
acceptance, integration, and functional testing.

Write our automated tests before we write the code (TDD)

Implement the red-green-refactor pattern of TDD, to write small,
incremental changes with associated unit tests.

Continuously build, test, and integrate our code

Ensure tests run quickly (in parallel, if necessary)

Automate the commencement and running of tests (from source check-in),
rather than waiting for manual approval or trigger from developers

Step towards continuous delivery by automatically building and testing in a
production like environment, when code is checked-in to version control.

Create the foundations of your Development Pipeline

Make infrastructure easier to rebuild than repair

Establish immutable infrastructure where manual changes to PRD are not
allowed – on the construction/de-construction via automated processes.

Create our single repository of truth for the entire system

Have all application code, scripts, schemas, env creation tools, containers,
tests, and other technical artefacts in a common source control location.

Enable on demand creation of all environments

Done for dev teams includes running in a PRD like env

Ensure development teams demonstrate code in a production-like
environment as part of their definition of done.

Establish automated tools for configuration, OS, environments, and
deployment to allow dev teams to establish environments on demand

Integrate operations into the daily work of development

Integrate ops into dev rituals

Have the ops engineers attends development team ceremonies,
participating to improve the operational supportability of development

Assign an ops liaison to each service team

Build operational skills and awareness into teams by assigning an ops
liaison to each development team

Create shared services to increase developer productivity

Make relevant ops work visible on shared Kanban boards

Create a shared Kanban board that gives operations and development
visibility of what work is flowing into production shortly.

Create a set of centralized platforms and tooling that enable dev –
automated environments, testing, and common version control

Keep team sizes small

Use the “two pizza” rule – where teams are small enough that they can be
fed with two pizzas, ideally around 7 plus or minus 2.

Create loosely-coupled architectures

Decouple your services so they can be independently maintained and
deployed – with no shared data structures, and clearly defined boundaries

Design with Conway’s Law in Mind

Enable every team member to be a generalist

Focus on establish teams with generalist skills, providing opportunities for
all engineers to learn the skill necessary to build and run systems

Test, operations, and security as everyone’s job, every day

Establish shared goals on quality, availability, and security that are the
responsibility of everyone in the development process.

Design team boundaries in accordance with Conway's law

Avoid splitting teams by function or by architectural layer – instead,
structure teams around independent flow of value to the customer.

Enable market-orientated teams

Fund not projects, but services and products

Fund long-lived teams that focus on the achievement of organizational and
customer outcomes such as revenue, value, or adoption

Optimize for speed and embed the functional engineers and skills (Ops,
QA, Infosec etc) into each service team

Use tools to reinforce desired behaviour

Use common backlogs and tools between Dev & Ops teams

Establish a shared goal

Create a north star for the transformation team – relentlessly
communicate it to reinforce the vision and goal to the business

Create a dedicated transformation team

Assign dedicated resources to the DevOps transformation who are
generalists and respected – create space for them to focus

Reserve time for NFR and technical debt

Dedicate effort for addressing non-functional requirements and technical
debt – ideally 20-30% of time as a rule of thumb

Understand the work in our value stream

Create a value stream map to see the work

Keep our improvement planning horizons short

Be adaptive in planning improvements, work in short iterations of change,
measure outcomes, and incorporate past learnings in new initiatives

No one person can know all the work that must be performed to create
value for the customer – visualize this publicly for all to see

Selecting which value stream to start with

Consider both systems of record and engagement

Expand DevOps across the organization

Find innovators/early adopters, build a critical mass & silent majority, then
once widely adopted – you can focus on the holdouts.

Start with the most sympathetic & innovative groups

Find teams that already believe in DevOps, focusing on creating success
with those groups to build a coalition of change

Optimise your value stream to maximise flow – focusing both on quality
and speed to create a robust and fast flow of value

Leaders reinforce a learning culture

Leaders create iterative, short term target conditions – and empower
teams to experiment in order to solve for it.

Inject resilience patterns into our daily work

Relentless experimentation - testing the capacity/resilience of your code
by trying to break it & using the learnings to create antifragile systems

3rd Way: Continuous Learning & Experimentation

Enable an organizational learning & safety culture

Transform local discoveries into global improvements

Created shared source repo, have blameless post-mortems, and make all
documentation accessible & maintained to everyone in the organisation

Institutionalize the improvement of daily work

Pay down technical debt, fix defects, refactor and improve problematic
areas of the code – the ‘boy scout rule’ of leaving code better than before

Adopt a generative (Westrum) culture where failure leads to inquiry, and
information, including risks, is freely shared.

Enable optimizing for downstream teams

Design software with architecture, performance, stability, testability,
configurability, and security prioritized into the work.

Keep pushing quality closer to the source

Don’t hand off work to other teams, minimize approvals, right-size
documentation, and make changes in small batches.

Swam & solve problems to build new knowledge

Fix problems as they occur – and build a psychologically safe environment
for people to raise concerns real time.

See problems as they occur

Create fast feedback and fast-forward loops via creation of automated
builds, integration, and test processes.

2nd Way: The Principles of Feedback

Design a safe system of work

1st Way: The Principles of Flow

Make your work visible

Eliminate hardships and waste in the value stream

Continually identify and address your bottlenecks

Limit work in process (WIP)

Reduce the number of handoffs

Agile, Continuous Delivery, and The Three Ways

Reduce batch sizes

Th
e

 D
ev

O
p

s
H

an
d

b
o

o
k

C
h

ea
t

Sh
ee

t
 V

1
.0

Dev & Ops Become DevOps

Without alignment on incentives and goals, Development & IT Operations
will be at odds with each other.

Narrow the gap between the concept of Development and Operations –
creating shared responsibility of developing and releasing software to
customers via DevOps practices.

DevOps practices focuses on three core patterns:

1. Maximise flow of work from Business to the Customer
2. Create a fast and constant flow of feedback
3. Maintain a culture of trust, collaboration, and learning

Use a Kanban board to show your entire workstream, making it visible to
all stakeholders to drive central prioritization of work

Establish WIP limits at each stage of the Kanban board to limit multi-
tasking – measure lead times through the board

Set WIP limits on your Kanban board to reduce batch sizes by limiting the
amount of in-flight work – the optimum batch size will be the lowest total
cost of delivery when considering transaction and holding costs

Automate as much as possible in the development process –reorganizing
developments teams to have all capabilities required to develop, test,
release, and maintain their code in production

Continually identify and remove the most significant bottleneck impacting
your speed of delivery – creating change tolerant architectures and
automation through development & release.

Look for partially done work, extra processes/features, task switching,
waiting, motion, manual work, and heroics – and optimize to remove these

Manage complex work, swarm on problems, transfer knowledge through
the organization, and grow leaders with these values

Automate and enable low-risk releases

Inspired by the Clean Code Cheat Sheet developed by Urs Enzler
from bbv software services (www.bbv.ch)
Tribute to the ‘The DevOps Handbook` published by:
Kim. G, Humble. J, Debois. P, Willis. J (2016), It Revolution Press

This work by Trevor de Vroome (2020) with support from
Whiteboard People (www.whiteboardpeople.com) , and review
from G. Moirod – and is licensed under a Creative Commons

Attribution 4.0 International License.

Ensure docs and proof for auditors and compliance officers

Work with auditors in the control design process - sending all telemetry to
centralized systems for auditor access and auditing.

Reduce reliance on separation of duty

Use controls like pair programming, continuous inspection, code reviews
and others as the primary sources of control over separation of duty.

Re-categorize the lower risk changes as standard changes

Categorize and record all changes, focusing on moving changes with
patterns of high success and low MTTR to be ‘standard’ changes

Integrate security and compliance into change approval

Leverage ITIL’s standard/normal/urgent change classifications and
incorporate security assessment into those to meet compliance needs

Protecting the Deployment Pipeline

Protect your deployment pipeline

Harden CI/CD process, review all changes in version control, instrument to
detect suspicious API calls, isolate CI processes running.

Create security telemetry in your environment

Establish telemetry into your environments to monitor changes to OS,
security, config, infrastructure, or XSS/SQLi attempts & server errors

Create security telemetry in your applications

Establish telemetry into your applications to identify insecure practices or
behaviours in the system operation – and flags appropriate alert levels

Integrate information security into production telemetry

Provide security telemetry via the same tools that Dev, QA, and Operations
are using to give everyone vision of security performance.

Ensure security of the environment

Establish known good states of environments – automating the monitoring
of all production instances against those good states.

Ensure security of your software supply chain

Ensure all packages and dependencies used are up to date, and meet the
same security tests required of your platform as a whole.

Ensure security of the application

Tests should include static & dynamic analysis, dependency scanning, and
code integrity and signing checks – and be aligned with OWASP guidelines

Integrate security into your deployment pipeline

Create security tests that run as part of the deployment pipeline for every
committed change.

Integrate security controls into source code and services

Centralize a set of pre-validated security blessed libraries that are
maintained and pulled in real-time during the CI/CD pipeline.

Integrate security into defect tracking and post-mortems

Track all security issues in the same work tracking system as that which
Dev and Ops are using – include post-mortem learnings into this

Integrate sec into development iteration demonstrations

Incorporate security into the acceptance criteria and DoD for your stories

Information Security as Everyone’s Job, Every Day

Create internal consulting and coaches to spread practices

Allocate specific resources focused on improvement without constraint

Share your experiences from conferences

Apply and experiment with the learnings you obtain from conferences –
fostering the relationships you build for continuous learning from peers

Enable everyone to teach and learn

Dedicate regular time for learning and teaching – being committed to
prevent it being deprioritized for other operational work.

Institutionalize rituals to pay down technical debt

Regularly schedule improvement blitzes/hack weeks focusing on enabling
the team to pay back technical debt and improve their means of delivery

Reserve Time to Create Org. Learning and Improvement

Ensure technology choices help achieve org. goals

Select technology standards that allow for fast deployment, common
learning and skill, and ease of understanding and maintenance.

Build reusable operations user stories into development

Relentlessly automate every step of the deployment process – Supporting
Ops improvements with Engineering effort in automation and tooling

Design for operations through codified NFR

Establish standard NRF requirements that set a baseline that all new
services must achieve in order to enable operational objectives.

Spread knowledge through docs and CoP

Develop tests that are self documenting of the code – showing engineers
working examples of how to use the system.

Create a single, shared source code repository

Establish a central shared source repository that stores all tools/
libraries/infrastructure/config/source for deploying all environments

Automated standardized processes in software for re-use

Capture knowledge and documentation of services in source control,
making information available for everyone to search and use.

Use chat to automate and capture org. knowledge

Document and share observations of system and testing health
automatically via a shared chat location that is transparent to all

Convert Local Discoveries into Global Improvements

Institute game days to rehearse failures

Regularly simulate failure - This tests the fault resistance of your software
in a wide variety of scenarios to identify and address latest defects

Inject production failures to enable resilience and learning

Deliberately create failure scenarios in production – Implement a ‘Chaos
Monkey’ to test the resilience of your production systems.

Redefine failure and encourage calculated risk-taking

You need to fail faster and more often, identifying it as a learning
opportunity and applying the necessary correction to prevent recurrence

Decrease incident tolerances to find weaker failure signals

Standardization along cannot prevent software issues – continually
experiment and discover to find new software risks.

Publish our post-mortems as widely as possible

Make the findings and actions of post-mortems transparent to all, all the
way through to the customer, if possible. The goal is to spread the
knowledge, so others can learn from it.

Schedule blameless post-mortem meetings after accidents

When failures occur, bring all stakeholders together to understand the
timeline of events, identify root cause, identifying blameless learnings

Establish a just, learning culture

Build a culture that embraces failure as a trigger for inquiry and learning ,
and not of scapegoating and blame

Enable and Inject Learning into Daily Work

Fearlessly cut bureaucratic processes

Relentlessly reduce the effort required for engineers to perform work and
deliver it to the customer with light controls, and high automation.

Enable pair programming to improve changes

Spread knowledge and develop in small testable batches through pair
programming, and practices like TDD/BDD

Avoid manual testing and change freezes

Automate and integrate testing into your daily work, ensuring a flow of
changes into production with high release frequency

Enable peer review of changes

Ensure all code is reviewed prior to release – keeping the size of changes
small to streamline review & release practices.

Enable coordination and scheduling of changes

Create loosely-coupled architecture to avoid release dependencies –
enabling independent deployment of services by teams.

Ensure you don't "Overly control" changes

You cannot reliably predict successful changes with words - use control
methods that resemble peer review & reduce reliance on external bodies

Avoid the dangers of change approval processes

Change controls can create negative impacts – be mindful that more
controls added means a more rigid processes, and less adaptability.

Create Review and Coord. Processes to Increase Quality

Integrate A/B testing into your feature planning

Use the feature hypothesis: We Believe (action), will result in (result), we
will have confidence to proceed when see (measure)

Integrate A/B testing into your release

Integrate feature toggles into new releases, and leverage them to control
the percentage of users who experience the treatment version.

Integrate A/B testing into your feature testing

Release two version of your product, diverting a number users to the
control (“A”) or the treatment (“B”) – applying statistical analysis of results

Integrate A/B Testing into Our Daily Work

Have Devs initially self-manage their production service

Dev teams have a Launch Readiness Review with Ops on their early life
services – then self-manage those until operational stability and a Hand-off
Readiness Review is completed.

Have developers follow work downstream

Have the developers directly observe the UX of their software on real users
– understanding any challenges users are facing.

Dev shares pager rotation duties with Ops

Make problems visible to Developers by having them be responsible for
handling of operational incidents – by implementing and making them
responsible for pager duties of priority incidents.

Use telemetry to make deployments safer

Actively monitor the metrics associated with your feature during
deployment - overlaying metrics with code deployment patterns for insight

Enable Feedback So Dev and Ops Can Safely Deploy Code

Leverage anomaly detection for non-bell curve

Establish patterns in your telemetry, and leverage smoothing, period
patterns, and seasonality to your data where it described by a bell curve.

No standard deviation on telemetry that’s not bell curved

Where normal operation can’t be described by the bell curve – don’t use
the standard deviation as it will create over or under alerting

Instrument and alert on undesired outcomes

Identify the lead indicators of outages, and instrument to alert on those to
create pro-active early detection systems.

Use mean and standard deviations to detect problems

Create alerts that look for outliers from the mean using a standard
deviation where data sets are bell curved in nature

Analyse Telemetry to Anticipate Problems and Hit Goals

Find and fill any telemetry gaps

Create telemetry at all levels of the application stack, for all environments,
and throughout the entire deployment pipeline.

Enable self-service to telemetry and information radiators

Provide mechanisms so all teams can get access to production telemetry
easily, without needing production access or privileged accounts.

Enable creation of production metrics as part of daily work

Create central and easy to use infrastructure and libraries so that it is easy
for development & operations to create telemetry for all new functionality.

Use telemetry to guide problem solving

Leverage the telemetry to provide fact based problem solving - using the
scientific method to create and test hypothesis to obtain learning.

Create application logging telemetry that helps production

Ensure every feature is instrumented and providing telemetry, and create
logging hierarchies for both non-functional and feature attributes.

Create centralized telemetry infrastructure

Centralize logging, transform the logging into valuable metrics, then apply
statistical analysis to identify patterns to trigger actionable events

Create Telemetry to Enable Seeing and Solving Problems

Use the strangler pattern to safely evolve

To decommission legacy software – place it behind an API where it remains
unchanged, then gradually replace it with the desired architecture.

Select the best architecture for your needs

Monolithic architectures are fine for early life companies, but may not
scale – establish a loosely coupled architecture and adaptable design.

Architect to enable productivity, testability, and safety

Establish a loosely-coupled architecture with well-defined interfaces which
enforce how services connect with one another.

Th
e

 D
ev

O
p

s
H

an
d

b
o

o
k

C
h

ea
t

Sh
ee

t
 V

1
.0

Architect for low risk releases

